Close this search box.

CVML Short Course – Machine Learning and Deep Neural Networks (v2)


2021-04-27 - 2021-04-28 ( )


Εξ αποστάσεως


Βάσει εκπτωτικής πολιτικής

Υπεύθυνος Προγράμματος:
Ioannis Pitas
Η υποβολή αιτήσεων ολοκληρώνεται στις

CVML Short Course – Machine Learning and Deep Neural Networks (v2)

Η υποβολή αιτήσεων ολοκληρώνεται στις



  • Σύντομη Περιγραφή

    The Center for Education and Lifelong Learning of the Aristotle University of Thessaloniki welcomes you to the “CVML Short Course – Machine Learning and Deep Neural Networks”, a 16-hour online course via zoom application.

    The Director of the Programme is Ioannis Pitas, Professor, School of Informatics, AUTh.

    Prof. Ioannis Pitas (IEEE fellow, IEEE Distinguished Lecturer, EURASIP fellow) received the Diploma and PhD degree in Electrical Engineering, both from the Aristotle University of Thessaloniki (AUTH), Greece. Since 1994, he has been a Professor at the Department of Informatics of AUTH and Director of the Artificial Intelligence and Information Analysis (AIIA) lab. He served as a Visiting Professor at several Universities.

    His current interests are in the areas of computer vision, machine learning, autonomous systems, intelligent digital media, image/video processing, human-centred computing, affective computing, 3D imaging and biomedical imaging. He has published over 1000 papers, contributed in 47 books in his areas of interest and edited or (co-)authored another 11 books. He has also been member of the program committee of many scientific conferences and workshops. In the past, he served as Associate Editor or co-Editor of 9 international journals and General or Technical Chair of 4 international conferences. He participated in 70 R&D projects, primarily funded by the European Union and is/was principal investigator/researcher in 42 such projects. Prof. Pitas lead the big European H2020 R&D project MULTIDRONE: He is AUTH principal investigator in H2020 R&D projects Aerial Core and AI4Media. He is chair of the Autonomous Systems Initiative He is head of the EC funded AI doctoral school of Horizon2020 EU funded R&D project AI4Media (1 of the 4 in Europe). He has 32200+ citations to his work and h-index 85+ (Google Scholar).


    Aim and objectives

    The aim of this course is to provide useful knowledge on topics related to “Machine Learning and Deep Neural Networks” to young scientists.

    Participant selection & Requirements

    Priority order will be observed based on filing date up to 40 people.

    The course aims at young professionals and academics.



    • Mathematical background
    • Internet access



    E-learning education


    Course Description

    Introduction to Machine Learning, Artificial Neural Networks, Perceptron, Multilayer perceptron. Backpropagation, Deep neural networks. Convolutional NNs, Recurrent Neural Networks. LSTMs, Attention and Transformers, Deep learning for object detection, Deep Semantic Image Segmentation, Generative Adversarial Networks, Data Clustering, Decision Surfaces. Support Vector Machines, Dimensionality Reduction, Kernel Methods, Bayesian Learning, Deep Reinforcement Learning, CVML Software Development Tools.

    More information:


    Educational Material:

    • PDF slides will be available to course attendees
    • Lectures will be prerecorded to facilitate attendees in case they experience problems due to time difference.



    There will not be.



    Upon completion of the course, participants will be awarded a Certificate of attendance.

    For the successful completion of the programme, the participants should:

    • have attended more than 14 lectures.
    • to have paid all the tuition fees by 26/04/2021.


    Participation fees

    Early registration (till 16/04/2021): 200€ students, 300€ standard

    Registration (after 16/04/2021): 250€ students, 350€ standard


    Up to 10 PhD students, registered in AUTH or in any VISION CSA or AI4Media or Humane-AI-Net University partners, are entitled for 1 free CVML Web Course registration per fall/spring semester on a FCFS basis, with priority to ones working on AI-related topics. This offer is related to the upcoming educational activities of International AI Doctoral Academy (AIDA) that is co-initiated by these two projects.

  • Επικοινωνία

    For further information, please contact with Mrs. Koroni Ioanna at

  • Κανονισμός Σπουδών ΚΕΔΙΒΙΜ ΑΠΘ
    Δείτε τον κανονισμό σπουδών ΕΔΩ
  • Κανονισμός Διαχείρισης Παραπόνων
    Δείτε τον κανονισμό διαχείρισης παραπόνων ΕΔΩ



Το περιεχόμενο δεν είναι διαθέσιμο.
Μετάβαση στο περιεχόμενο